Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
NPJ Regen Med ; 8(1): 34, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429889

RESUMO

Intervertebral disc (IVD) degeneration and herniation is a leading cause of disability globally and a large unmet clinical need. No efficient non-surgical therapy is available, and there is an urgency for minimally invasive therapies capable of restoring tissue function. IVD spontaneous hernia regression following conservative treatment is a clinically relevant phenomenon that has been linked to an inflammatory response. This study establishes the central role of macrophages in IVD spontaneous hernia regression and provides the first preclinical demonstration of a macrophage-based therapy for IVD herniation. A rat model of IVD herniation was used to test complementary experimental setups: (1) macrophage systemic depletion via intravenous administration of clodronate liposomes (Group CLP2w: depletion between 0 and 2 weeks post-lesion; Group CLP6w: depletion between 2 and 6 weeks post-lesion), and (2) administration of bone marrow-derived macrophages into the herniated IVD, 2 weeks post-lesion (Group Mac6w). Herniated animals without treatment were used as controls. The herniated area was quantified by histology in consecutive proteoglycan/collagen IVD sections at 2 and 6 weeks post-lesion. Clodronate-mediated macrophage systemic depletion was confirmed by flow cytometry and resulted in increased hernia sizes. Bone marrow-derived macrophages were successfully administered into rat IVD hernias resulting in a 44% decrease in hernia size. No relevant systemic immune reaction was identified by flow cytometry, cytokine, or proteomic analysis. Furthermore, a possible mechanism for macrophage-induced hernia regression and tissue repair was unveiled through IL4, IL17a, IL18, LIX, and RANTES increase. This study represents the first preclinical proof-of-concept of macrophage-based immunotherapy for IVD herniation.

2.
Aging Cell ; 22(8): e13873, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254638

RESUMO

Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Bovinos , Núcleo Pulposo/metabolismo , Antígeno CD146/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Envelhecimento/metabolismo
3.
Eur Spine J ; 32(6): 1985-1991, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106251

RESUMO

PURPOSE: Over the last years, the number of vertebral arthrodesis has been steadily increasing. The use of iliac crest bone autograft remains the "gold standard" for bone graft substitute in these procedures. However, this solution has some side effects, such as the problem of donor site morbidity indicating that there is a real need for adequate alternatives. This pilot study aimed to evaluate the usefulness of chitosan (Ch) porous 3D scaffolds incorporated with resolvin D1 (RvD1) as an alternative implant to iliac bone autograft. METHODS: We have performed bilateral posterolateral lumbar vertebral arthrodesis in a rat animal model. Three experimental groups were used: (i) non-operated animals; (ii) animals implanted with Ch scaffolds incorporated with RvD1 and (iii) animals implanted with iliac bone autograft. RESULTS: The collagenous fibrous capsule formed around the Ch scaffolds with RvD1 is less dense when compared with the iliac bone autograft, suggesting an important anti-inflammatory effect of RvD1. Additionally, new bone formation was observed in the Ch scaffolds with RvD1. CONCLUSION: These results demonstrate the potential of these scaffolds for bone tissue repair applications.


Assuntos
Substitutos Ósseos , Quitosana , Fusão Vertebral , Ratos , Animais , Quitosana/farmacologia , Projetos Piloto , Fusão Vertebral/métodos , Vértebras Lombares/cirurgia , Transplante Ósseo/métodos
4.
Regen Biomater ; 9: rbac065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267154

RESUMO

Successful wound healing is a process that has three overlying phases: inflammatory, proliferative and remodeling. Chronic wounds are characterized by a perpetuated inflammation that inhibits the proliferative and remodeling phases and impairs the wound healing. Macrophages are key modulators of the wound healing process. Initially, they are responsible for the wound cleaning and for the phagocytosis of pathogens and afterwards they lead to the resolution of the inflammatory response and they express growth factors important for angiogenesis and cytokines and growth factors needed for cell proliferation and deposition of extracellular matrix. The phenotype of the macrophage changes gradually throughout the healing process from the initial M1 pro-inflammatory phenotype characteristic of the acute response to the M2 pro-regenerative phenotype that allows an accurate tissue repair. In chronic wounds, M1 pro-inflammatory macrophages persist and impair tissue repair. As such, immunomodulatory biomaterials arise as promising solutions to accelerate the wound healing process. In this review, we discuss the importance of macrophages and their polarization throughout the different phases of wound healing; macrophage dysfunction in chronic wounds and the use of immunomodulatory biomaterials to overcome the critical problem of chronic wounds-the continued inflammatory phase that impairs healing.

5.
Biomater Sci ; 9(9): 3209-3227, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949372

RESUMO

Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Géis , Imunomodulação , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
J Cell Biochem ; 122(1): 116-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748513

RESUMO

Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro- or microvasculature) play a role in the formation of microvessel-like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor-ß1, and interleukin-8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibroblasts and human ECs stimulate collagen synthesis and growth factors production by fibroblasts that ultimately affect the formation and distribution of microvessel-like structures in cell cultures. In this study, areas with activated fibroblasts and high alkaline phosphatase (ALP) activity were also observed in cocultures. Molecular docking assays revealed that ALP has two binding positions for collagen, suggesting its impact in collagen proteins' aggregation, cell migration, and microvessel assembly. These findings indicate that bioinformatics and coculture systems are complementary tools for investigating the participation of proteins, like collagen and ALP in angiogenesis.


Assuntos
Fosfatase Alcalina/metabolismo , Movimento Celular , Colágeno/metabolismo , Endotélio Vascular/fisiologia , Fibroblastos/fisiologia , Microvasos/fisiologia , Neovascularização Fisiológica , Fosfatase Alcalina/química , Sítios de Ligação , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Fibroblastos/citologia , Humanos , Técnicas In Vitro , Microvasos/citologia , Conformação Proteica
7.
Biomaterials ; 257: 120218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32736253

RESUMO

Radiotherapy (RT) is an essential treatment modality for several types of cancer. Despite its therapeutic potential, RT is frequently insufficient to overcome the immunosuppressive nature of the tumor microenvironment, failing to control tumor metastases. Innovative immunomodulatory strategies, like immunostimulatory biomaterials could be used to boost the immunogenic effects of RT. Herein, we addressed the synergistic potential of immunostimulatory chitosan/poly(γ-glutamic acid) nanoparticles (Ch/γ-PGA NPs) combined with RT to induce antitumor immunity in the 4T1 orthotopic breast tumor mouse model. Non-treated animals had progressive primary tumor growth and developed splenomegaly and lung metastases. While RT decreased primary tumor burden, Ch/γ-PGA NPs-treatment decreased systemic immunosuppression and lung metastases. The combination therapy (RT + Ch/γ-PGA NPs) synergistically impaired 4T1 tumor progression, which was associated with a significant primary tumor growth and splenomegaly reduction, a decrease in the percentage of splenic immunosuppressive myeloid cells and an increase in antitumoral CD4+IFN-γ+ population. Notably, animals from the combination therapy presented less and smaller lung metastatic foci and lower levels of the systemic pro-tumor cytokines IL-3, IL-4, IL-10, and of the CCL4 chemokine, in comparison to non-treated animals. Overall, these results evidenced that Ch/γ-PGA NPs potentiate and synergize with RT, headlining their promising role as adjuvant anticancer strategies.


Assuntos
Quitosana , Neoplasias Mamárias Experimentais , Nanopartículas , Animais , Feminino , Imunoterapia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Ácido Poliglutâmico/análogos & derivados
8.
Acta Biomater ; 114: 471-484, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32688091

RESUMO

Macrophage behavior upon biomaterial implantation conditions the inflammatory response and subsequent tissue repair. The hypothesis behind this work was that fibrinogen (Fg) and magnesium (Mg) biomaterials, used in combination (FgMg) could act synergistically to modulate macrophage activation, promoting a pro-regenerative phenotype. Materials were characterized by scanning electron microscopy, Fg and Mg degradation products were quantified by atomic absorption spectroscopy and ELISA. Whole blood immune cells and primary human monocyte-derived macrophages were exposed to the biomaterials extracts in unstimulated (M0) or pro-inflammatory LPS or LPS-IFNγ (M1) conditions. Macrophage phenotype was evaluated by flow cytometry, cytokines secreted by whole blood cells and macrophages were measured by ELISA, and signaling pathways were probed by Western blotting. The secretomes of macrophages preconditioned with biomaterials extracts were incubated with human mesenchymal stem/stromal cells (MSC) and their effect on osteogenic differentiation was evaluated via Alkaline Phosphatase (ALP) activity and alizarin red staining. Scaffolds of Fg, alone or in the FgMg combination, presented similar 3D porous architectures. Extracts from FgMg materials reduced LPS-induced TNF-α secretion by innate immune cells, and macrophage M1 polarization upon LPS-IFNγ stimulation, resulting in lower cell surface CD86 expression, lower NFκB p65 phosphorylation and reduced TNF-α secretion. Moreover, while biomaterial extracts per se did not enhance MSC osteogenic differentiation, macrophage secretome, particularly from cells exposed to FgMg extracts, increased MSC ALP activity and alizarin red staining, compared with extracts alone. These findings suggest that the combination of Fg and Mg synergistically influences macrophage pro-inflammatory activation and crosstalk with MSC. STATEMENT OF SIGNIFICANCE: Modulating macrophage phenotype by degradable and bioactive biomaterials is an increasingly explored strategy to promote tissue repair/regeneration. Fibrinogen (Fg) and magnesium (Mg)-based materials have been explored in this context. Previous work from our group showed that monocytes interact with fibrinogen adsorbed onto chitosan surfaces through TLR4 and that fibrinogen scaffolds promote in vivo bone regeneration. Also, magnesium ions have been reported to modulate macrophage pro-inflammatory M1 stimulation and to promote bone repair. Here we report, for the first time, the combination of Fg and Mg materials, hypothesizing that it could act synergistically on macrophages, directing them towards a pro-regenerative phenotype. As a first step towards proving/disproving our hypothesis we used extracts obtained from Fg, Mg and FgMg multilayer constructs. We observed that FgMg extracts led to a reduction in the polarization of macrophages towards a pro-inflammatory phenotype. Also, the secretome of macrophages exposed to extracts of the combination material promoted the expression of osteogenic markers by MSCs.


Assuntos
Materiais Biocompatíveis , Magnésio , Materiais Biocompatíveis/farmacologia , Fibrinogênio , Humanos , Macrófagos , Magnésio/farmacologia , NF-kappa B , Osteogênese , Fenótipo
9.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138314

RESUMO

Inflammation is central in intervertebral disc (IVD) degeneration/regeneration mechanisms, and its balance is crucial to maintain tissue homeostasis. This work investigates the modulation of local and systemic inflammatory response associated with IVD degeneration/herniation by administration of PRO- versus ANTI-inflammatory treatments. Chitosan/poly-γ-glutamic acid nanocomplexes, known as pro-inflammatory (PRO), and soluble diclofenac, a non-steroidal anti-inflammatory drug (ANTI), were intradiscally administered in a rat IVD injury model, 24 h after lesion. Two weeks after administration, a reduction of disc height accompanied by hernia formation was observed. In the PRO-inflammatory treated group, IL-1ß, IL-6 and COX-2 IVD gene expression were upregulated, and loss of nucleus pulposus (NP) structure and composition was observed. Systemically, lower T-cell frequency was observed in the lymph nodes (LN) and spleen (SP) of the PRO group, together with an increase in CD4+ T cells subset in the blood (BL) and LN. In contrast, the ANTI-group had higher proteoglycans/collagen ratio and collagen type 2 content in the NP, while an increase in the frequency of myeloid cells, M1 macrophages and activated macrophages (MHCII+) was observed at the systemic level. Overall, this study illustrates the dynamics of local and systemic inflammatory and immune cell responses associated with intradiscal therapies, which will contribute to designing more successful immunomodulatory treatments for IVD degeneration.


Assuntos
Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Materiais Biocompatíveis/química , Linfócitos T CD4-Positivos/metabolismo , Colágeno Tipo II/metabolismo , Citometria de Fluxo , Disco Intervertebral/imunologia , Degeneração do Disco Intervertebral/imunologia , Deslocamento do Disco Intervertebral/imunologia , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores CCR7/metabolismo
10.
J Biomed Mater Res A ; 108(4): 851-862, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31845492

RESUMO

Fibrinogen (Fg) is a pro-inflammatory protein with pro-healing properties. Previous work showed that fibrinogen 3D scaffolds (Fg-3D) promote bone regeneration, but the cellular players were not identified. Osteoclasts are bone resorbing cells that promote bone remodeling in close crosstalk with osteoblasts. Herein, the capacity of osteoclasts differentiated on Fg-3D to degrade the scaffolds and promote osteoblast differentiation was evaluated in vitro. Fg-3D scaffolds were prepared by freeze-drying and osteoclasts were differentiated from primary human peripheral blood monocytes. Results obtained showed osteoclasts expressing the enzymes cathepsin K and tartrate resistant acid phosphatase colonizing Fg-3D scaffolds. Osteoclasts were able to significantly degrade Fg-3D, reducing the scaffold's area, and increasing D-dimer concentration, a Fg degradation product, in their culture media. Osteoclast conditioned media from the first week of differentiation promoted significantly stronger human primary mesenchymal stem/stromal cell (MSC) osteogenic differentiation, evaluated by alkaline phosphatase activity. Moreover, week 1 osteoclast conditioned media promoted earlier MSC osteogenic differentiation, than chemical osteogenesis inductors. TGF-ß1 was found increased in osteoclast conditioned media from week 1, when compared to week 3 of differentiation. Taken together, our results suggest that osteoclasts are able to differentiate and degrade Fg-3D, producing factors like TGF-ß1 that promote MSC osteogenic differentiation.


Assuntos
Diferenciação Celular , Fibrinogênio/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoclastos/metabolismo , Osteogênese , Tecidos Suporte/química , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Fibrinogênio/ultraestrutura , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
11.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683648

RESUMO

Rheumatoid arthritis (RA) is a systemic disease that affects the osteoarticular system, associated with bone fragility and increased risk of fractures. Herein, we aimed to characterize the systemic impact of the rat collagen-induced arthritis (CIA) model and explore its combination with femoral bone defect (FD). The impact of CIA on endogenous mesenchymal stem/stromal cells (MSC) was also investigated. CIA induction led to enlarged, more proliferative, spleen and draining lymph nodes, with altered proportion of lymphoid populations. Upon FD, CIA animals increased the systemic myeloid cell proportions, and their expression of co-stimulatory molecules CD40 and CD86. Screening plasma cytokine/chemokine levels showed increased tumor necrosis factor-α (TNF-α), Interleukin (IL)-17, IL-4, IL-5, and IL-12 in CIA, and IL-2 and IL-6 increased in CIA and CIA+FD, while Fractalkine and Leptin were decreased in both groups. CIA-derived MSC showed lower metabolic activity and proliferation, and significantly increased osteogenic and chondrogenic differentiation markers. Exposure of control-MSC to TNF-α partially mimicked the CIA-MSC phenotype in vitro. In conclusion, inflammatory conditions of CIA led to alterations in systemic immune cell proportions, circulating mediators, and in endogenous MSC. CIA animals respond to FD, and the combined model can be used to study the mechanisms of bone repair in inflammatory conditions.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Doenças Ósseas/metabolismo , Citocinas/metabolismo , Sistema Imunitário/metabolismo , Mediadores da Inflamação/metabolismo , Animais , Células Cultivadas , Citocinas/sangue , Feminino , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/sangue , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Mieloides/metabolismo , Ratos Wistar
12.
Front Immunol ; 10: 1875, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481956

RESUMO

Macrophages are one of the immune populations frequently found in colorectal tumors and high macrophage infiltration has been associated with both better and worst prognosis. Importantly, according to microenvironment stimuli, macrophages may adopt different polarization profiles, specifically the pro-inflammatory or M1 and the anti-inflammatory or M2, which display distinct functions. Therefore, concomitantly with the number of tumor-associated macrophages (TAMs), their characterization is fundamental to unravel their relevance in cancer. Here, we profiled macrophages in a series of 150 colorectal cancer (CRC) cases by immunohistochemistry, using CD68 as a macrophage lineage marker, CD80 as a marker of pro-inflammatory macrophages, and CD163 as a marker of anti-inflammatory macrophages. Quantifications were performed by computer-assisted analysis in the intratumoral region, tumor invasive front, and matched tumor adjacent normal mucosa (ANM). Macrophages, specifically the CD163+ ones, were predominantly found at the tumor invasive front, whereas CD80+ macrophages were almost exclusively located in the ANM, which suggests a predominant anti-inflammatory polarization of TAMs. Stratification according to tumor stage revealed that macrophages, specifically the CD163+ ones, are more prevalent in stage II tumors, whereas CD80+ macrophages are predominant in less invasive T1 tumors. Specifically in stage III tumors, higher CD68, and lower CD80/CD163 ratio associated with decreased overall survival. Importantly, despite the low infiltration of CD80+ cells in colorectal tumors, multivariate logistic regression revealed a protective role of these cells regarding the risk for relapse. Overall, this work supports the involvement of distinct microenvironments, present at the intra-tumor, invasive front and ANM regions, on macrophage modulation, and uncovers their prognostic value, further supporting the relevance of including macrophage profiling in clinical settings.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Macrófagos/imunologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
13.
Front Immunol ; 10: 1508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333653

RESUMO

Low back pain is a highly prevalent clinical problem and intervertebral disc (IVD) degeneration is now accepted as the major pathophysiological mechanism responsible for this condition. Accumulating evidence suggests that inflammation plays a crucial role in the progression of human IVD degeneration, with macrophages being pointed as the key immune cell players in this process since their infiltration in degenerated IVD samples has been extensively demonstrated. Since they are highly plastic, macrophages can play different roles depending on the microenvironmental cues. The study of inflammation associated with IVD degeneration has been somehow neglected and one of the reasons is related with lack of adequate models. To overcome this, we established and characterized a new model of IVD organ culture under pro-inflammatory conditions to further dissect the role of macrophages in IVD associated immune response. For that, human monocyte-derived macrophages were co-cultured either with bovine caudal IVD punches in the presence of the pro-inflammatory cytokine IL-1ß, or IVD-conditioned medium (CM), to investigate how IVD-produced factors influence macrophage phenotype. After 72 h, metabolic activity, gene expression and cytokine profile of macrophages and IVD cells were measured. Our results show that macrophages and IVDs remain metabolically active in the presence of IL-1ß, significantly upregulate CCR7 gene expression and increase production of IL-6 on macrophages. When treating macrophages with IL-1ß-IVD-CM, CCR7 upregulation follows the same trend, while for IL-6 an opposite effect was observed. On the other hand, macrophages interfere with IVD ECM remodeling, decreasing MMP3 expression and downregulating aggrecan and collagen II gene expression in the presence of IL-1ß. Overall, the co-culture model established in this study can be considered a suitable approach to address the cellular and molecular pathways that regulate macrophage-IVD crosstalk, suggesting that degenerated IVD tissue tends to polarize human macrophages toward a more pro-inflammatory profile, which seems to aggravate IVD degeneration. This model could be used to improve the knowledge of the mechanisms that link IVD degeneration and the immune response.


Assuntos
Microambiente Celular/imunologia , Regulação para Baixo/imunologia , Degeneração do Disco Intervertebral/imunologia , Macrófagos/imunologia , Animais , Bovinos , Citocinas/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Degeneração do Disco Intervertebral/patologia , Macrófagos/patologia
14.
Biomater Sci ; 7(8): 3386-3403, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31233057

RESUMO

IFN-γ therapy has been approved by the Food and Drug Administration (FDA) for the treatment of chronic granulomatous disease and severe malignant osteopetrosis. Despite the promising IFN-γ-based therapeutic applications, its limited success in clinical trials is related with limitations inherent to its molecular properties and with the difficulties to deliver it locally or with adequate periodicity to achieve a therapeutic effect. We have previously shown that chitosan (Ch)/poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) are immunostimulatory, impairing colorectal cancer cell invasion. Ch is a biocompatible cationic polysaccharide extensively studied and already approved for biomedical applications while γ-PGA is a poly(amino acid), biodegradable and negatively charged. Here, we evaluated the potential of Ch/γ-PGA NPs as vehicles for IFN-γ and their ability to modulate immune cells' phenotype. In this study, Ch/IFN-γ/γ-PGA nanoparticles (IFN-γ-NPs) prepared by a co-acervation method, presenting a size of approximately 180 nm and a low polydispersity index, were tested for their immunomodulatory activity. These IFN-γ-NPs induced an immunostimulatory profile on dendritic cells (DCs) with increased cell surface costimulatory molecules and secretion of pro-inflammatory cytokines, including IL-6, IL-12p40 and TNF-α. IFN-γ-NPs also modulated the IL-10-stimulated macrophage profile, increasing their ability to secrete the pro-inflammatory cytokines IL-6, IL-12p40 and TNF-α. Concomitantly, these phenotypic alterations enhanced T cell proliferation. In addition, the ability of DCs and macrophages to induce colorectal cancer cell invasion was hampered in the presence of IFN-γ-NPs. Although the major observations were mediated by Ch/γ-PGA NPs, the incorporation of IFN-γ into NPs potentiated the expression of CD40 and CD86, and the impairment of colorectal cancer cell invasion. This work bridges the previously reported immunostimulatory capacity of Ch/γ-PGA NPs with their potential as carriers for immunomodulatory molecules, like IFN-γ, opening new avenues for their use in clinical settings.


Assuntos
Quitosana/química , Neoplasias Colorretais/imunologia , Interferon gama/química , Interferon gama/farmacologia , Nanopartículas/química , Ácido Poliglutâmico/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Ácido Poliglutâmico/química , Fator de Transcrição STAT1/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
15.
Acta Biomater ; 94: 33-43, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226481

RESUMO

Biomedical devices in the blood flow disturb the fine-tuned balance of pro- and anti-coagulant factors in blood and vessel wall. Numerous technologies have been suggested to reduce coagulant and inflammatory responses of the body towards the device material, ranging from camouflage effects to permanent activity and further to a responsive interaction with the host systems. However, not all types of modification are suitable for all types of medical products. This review has a focus on application-oriented considerations of hemocompatible surface fittings. Thus, passive versus bioactive modifications are discussed along with the control of protein adsorption, stability of the immobilization, and the type of bioactive substance, biological or synthetic. Further considerations are related to the target system, whether enzymes or cells should be addressed in arterial or venous system, or whether the blood vessel wall is addressed. Recent developments like feedback controlled or self-renewing systems for drug release or addressing cellular regulation pathways of blood platelets and endothelial cells are paradigms for a generation of blood contacting devices, which are hemocompatible by cooperation with the host system. STATEMENT OF SIGNIFICANCE: This paper is part 4 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.


Assuntos
Materiais Biocompatíveis , Plaquetas/citologia , Células Endoteliais/metabolismo , Propriedades de Superfície , Adsorção , Animais , Coagulação Sanguínea , Proteínas Sanguíneas/metabolismo , Fibrinólise , Hemólise , Hemorreologia , Humanos , Teste de Materiais , Camundongos , Polímeros , Resistência ao Cisalhamento , Engenharia Tecidual
16.
Acta Biomater ; 91: 123-134, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31003033

RESUMO

Chitosan (Ch) is used in different biomedical applications to promote tissue repair. However, tissue injury caused by biomaterial implantation lead to the release of danger signals that engage different inflammatory pathways on the host. Different implanted materials activate the inflammasome leading to the modulation of the immune response. Here we have studied how macroscopic biomaterials, Ch scaffolds with different chemical composition: 4% or 15% degree of acetylation (DA) modulate the activation of the NLRP3 inflammasome in vitro. For that, we assessed the NLRP3 inflammasome in bone marrow derived mouse macrophages (BMDM) and human macrophages cultured within 3D Ch scaffolds. We found that both Ch scaffolds did not trigger the NLRP3 inflammasome activation in macrophages. Furthermore, BMDMs and human macrophages cultured in both Ch scaffolds presented a reduction in the number of apoptosis-associated speck-like protein containing a caspase activating recruitment domain (ASC) specks and in IL-1ß release upon classical NLRP3 inflammasome stimulation. We also found a decrease in proIL-1ß in BMDMs after priming with LPS when cultured in Ch scaffolds with DA 4% DA after priming with LPS when compared to Ch scaffolds with 15% DA or to macrophages cultured in cell-culture plates. Our results shows that 3D Ch scaffolds with different DA impair NLRP3 inflammasome priming and activation. STATEMENT OF SIGNIFICANCE: In this research work we have assessed the role of the NLRP3 inflammasome in the macrophage response to 3D chitosan scaffolds with different degrees of acetylation (DA). To our knowledge this is the first work that demonstrates the modulatory capacity of 3D porous chitosan scaffolds in the NLRP3 inflammasome activation, because our results show that Ch scaffolds impair NLRP3 inflammasome assembly in macrophages. Interestingly, our results are in contrast with studies reported in the literature that indicate that chitosan is a powerful activator of the NLRP3 inflammasome in nanoscale chitosan products. Our studies that were performed in large scale chitosan scaffolds, stress out that the process of phagocytosis is pivotal in inflammasome assembly and activation, are rather important since they clearly illustrate the different role of the inflammasome in the biological response to large scale and nanoscale biomaterials.


Assuntos
Quitosana/química , Inflamassomos/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Tecidos Suporte/química , Animais , Humanos , Interleucina-1beta/imunologia , Camundongos , Camundongos Knockout
17.
J Vis Exp ; (145)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958455

RESUMO

Current knowledge of extracellular matrix (ECM)-cell communication translates to large two-dimensional (2D) in vitro culture studies where ECM components are presented as a surface coating. These culture systems constitute a simplification of the complex nature of the tissue ECM that encompasses biochemical composition, structure, and mechanical properties. To better emulate the ECM-cell communication shaping the cardiac microenvironment, we developed a protocol that allows for the decellularization of the whole fetal heart and adult left ventricle tissue explants simultaneously for comparative studies. The protocol combines the use of a hypotonic buffer, a detergent of anionic surfactant properties, and DNase treatment without any requirement for specialized skills or equipment. The application of the same decellularization strategy across tissue samples from subjects of various age is an alternative approach to perform comparative studies. The present protocol allows the identification of unique structural differences across fetal and adult cardiac ECM mesh and biological cellular responses. Furthermore, the herein methodology demonstrates a broader application being successfully applied in other tissues and species with minor adjustments, such as in human intestine biopsies and mouse lung.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Feto/citologia , Miocárdio/citologia , Adulto , Animais , Humanos , Camundongos , Engenharia Tecidual
18.
Mater Sci Eng C Mater Biol Appl ; 99: 1289-1303, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889663

RESUMO

Strontium (Sr) is known to stimulate osteogenesis, while inhibiting osteoclastogenesis, thus encouraging research on its application as a therapeutic agent for bone repair/regeneration. It has been suggested that it may possess immunomodulatory properties, which might act synergistically in bone repair/regeneration processes. To further explore this hypothesis we have designed a Sr-hybrid system composed of an in situ forming Sr-crosslinked RGD-alginate hydrogel reinforced with Sr-doped hydroxyapatite (HAp) microspheres and studied its in vitro osteoinductive behaviour and in vivo inflammatory response. The Sr-hybrid scaffold acts as a dual Sr2+ delivery system, showing a cumulative Sr2+ release of ca. 0.3 mM after 15 days. In vitro studies using Sr2+concentrations within this range (0 to 3 mM Sr2+) confirmed its ability to induce osteogenic differentiation of mesenchymal stem/stromal cells (MSC), as well as to reduce osteoclastogenesis and osteoclasts (OC) functionality. In comparison with a similar Sr-free system, the Sr-hybrid system stimulated osteogenic differentiation of MSC, while inhibiting the formation of OC. Implantation in an in vivo model of inflammation, revealed an increase in F4/80+/CD206+ cells, highlighting its ability to modulate the inflammatory response as a pro-resolution mediator, through M2 macrophage polarization. Therefore, the Sr-hybrid system is potentially an appealing biomaterial for future clinical applications.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Estrôncio/farmacologia , Tecidos Suporte/química , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Inflamação/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C , Microesferas , Osteoclastos/efeitos dos fármacos , Adulto Jovem
19.
Acta Biomater ; 83: 1-12, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273748

RESUMO

The development of new biomaterials to be used in tissue engineering applications is creating new solutions for a range of healthcare problems. The trend in biomaterials research has shifted from biocompatible "immune-evasive" biomaterials to "immune-interactive" materials that modulate the inflammatory response supporting implant integration as well as improving healing and tissue regeneration. Inflammasomes are large intracellular multiprotein complexes that are key players in host defence during innate immune responses and assemble after recognition of pathogens or danger signals. The process of biomaterial implantation causes injury to tissues that will consequently release danger signals that could be sensed by the inflammasome. There are increasing evidences that the inflammasome has a role in several inflammatory processes, from pathogen clearance to chronic inflammation or tissue repair. Thus, modulation of the inflammasome activity appears as an important target in the development of effective approaches in regenerative medicine. In this review, we discuss the main points of the current understanding on the host response to implanted biomaterials and how the paradigm of "immune-evasive" biomaterials has shifted over the last years; the significance of the inflammasome in the inflammatory response to biomaterials; and the growing idea that the immune system is of key importance in an effective tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: We herein discuss the main points of the current understanding on the host response to implanted biomaterials and how the paradigm of "immune-evasive" biomaterials has shifted to "immune-interactive" over the last years; the significance of the inflammasome in the inflammatory response to biomaterials; and the growing idea that the immune system is of key importance in an effective tissue repair and regeneration, supporting the emerging concept of Regenerative Immunology. The inflammasome is a recent and central concept in immunology research. Since the beginning of this century the inflammasome is viewed as key platform of the innate immune response. We believe that, successful modulation of the inflammasome activity will become a milestone in the fields of tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Imunidade Inata , Inflamassomos/imunologia , Regeneração , Animais , Materiais Biocompatíveis/efeitos adversos , Humanos , Engenharia Tecidual
20.
J Tissue Eng Regen Med ; 13(1): 36-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362664

RESUMO

Human mesenchymal stem cells (MSC) are being explored for cell therapies targeting varied human diseases. For that, cells are being expanded in vitro, many times with fetal bovine serum (FBS) as the main source of growth factors. However, animal-derived components should not be used, to avoid immune rejection from the patient that receives the MSC. To solve this issue, different xeno-free media are being developed, and an industrial-grade human plasma fraction (SCC) is a promising candidate to substitute FBS. Indeed, we have previously shown that MSC expanded in SCC-medium maintain their phenotype and genetic stability. However, a reduction on MSC motility was observed when comparing with MSC motility on FBS-medium. Thus, in this present study, we have tested different factors to improve the motility of MSC in SCC-medium. Time lapse assays and experiments with transwells revealed that supplementation of the xeno-free medium with FGF or PDGF, but not TNF-α or SDF-1, increased MSC motility. Interestingly, FGF and PDGF supplementation also led to alterations on MSC morphology to a shape similar to the one observed when using FBS. The mechanism behind the effect of FGF on MSC motility involved the increased expression of αVß3 integrin. Furthermore, assays with small molecule inhibitors revealed that the signalling molecule p38 MAPK is important for MSC motility and that MEK/ERK and PI3K/AKT also have a role on FGF-supplemented expanded MSC. Thus, it was found that FGF supplementation can improve the motility of xeno-free-expanded MSC and that the cells motility is regulated by αVß3 integrin.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Integrina alfaVbeta3/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...